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INTRODUCTION

• Tokamak edge ideal for comprehensive study of turbulence,

– Accessible with probes
⇒ directly measure ne, Te, and other properties.

– Relatively low Te facilitates use of atomic physics
as basis for diagnostics.

– Potential payoff great because edge sets
boundary conditions for core transport,

∗ E.g., internal transport barriers, H-mode pedestal.

• Gas Puff Imaging (GPI) experiments designed
to measure 2-D structure of edge turbulence,

– Compare with 3-D nonlinear simulations.

– And with turbulence measured by probes,

– Puff neutral gas (e.g., D2) near outer wall,

∗ View with fast, high res. camera light
from electron impact excitation of gas,

∗ Use sightline ‖ ~B to see radial & poloidal structure,

• Explore relation between images & plasma fluctuations
with DEGAS 2 neutral transport code,

– Straightforward because puff does not perturb plasma,

– Emitted light brighter than background,

– Material surface interactions should not be important.

• Experimental presentation: O-02 J. L. Terry et al.
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DESCRIPTION OF DEGAS 2 SIMULATIONS

• Alcator C-Mod Geometry:

– Start with outline of vacuum vessel,

∗ Including gas puff nozzle & surrounding structures.

– EFIT equilibrium for time of interest ⇒
∗ 2-D plasma mesh set up using DG& Carre ,
∗ Bunch surfaces & grid points to get resolution

3 mm or smaller in region of interest.

– Divide puff region into ∼ 3 mm triangles
using Triangle .

• Simulations 2-D axisymmetric for now,

– Output is averaged over toroidal angle.

– ⇒ poloidal plane variation of photon emission rates.

– Plan to add toroidal resolution ⇒
∗ Can directly simulate fast camera views,
∗ Quantitative comparison of image intensity,
∗ Evaluate toroidal spatial averaging.



DEGAS 2 Geometry for C-Mod Shot 1010622



• Simulations assume steady-state.

– Compare time scales:

∗ Autocorrelation time for turbulence
= 10 – 20 µs,

∗ Time for 3 eV D to travel across cloud
= 1 µs (2 cm),

∗ Timescale for emission of Dα photon
= 1/A3→2 = 0.02 µs,

∗ Note that camera exposure times
= 2 µs (60 frame/s) or
4 µs (5× 106 frames / s),

∗ ⇒ assumption of stationary plasma OK.



• Physics:

– D2, D+
2 dissociation, including

∗ e + D2 → e + D(1s) + D(1s)

∗ e + D2 → e + D(1s) + D∗(n = 3)

∗ e + D2 → 2e + D+
2

∗ e + D2 → 2e + D(1s) + D+

∗ e + D+
2 → 2e + 2D+

∗ e + D+
2 → e + D(1s) + D+

∗ e + D+
2 → e + D+ + D∗(n = 3)

∗ e + D+
2 → D(1s) + D∗(n = 3)

– D + D+ elastic scattering (i.e., charge exchange),

– D2 + D+ elastic scattering,

– e + D ionization,

∗ “Multi-step”, i.e., collisional-radiative model.

– Neutral-neutral collisions not included,

∗ May not be negligible,
∗ Need realistic neutral density to treat,
∗ Can only be computed in 3-D.



– Emission rate (m−3 s−1) written as:

SDα =
∑

j=D,D2,D
+
2

njfj(ne, Te),

∗ Where nj = ground state atom & molecule density,

fD =
nD(n = 3)

nD(n = 1)
A3→2,

∗ [nD(n = 3)/nD(n = 1)](ne, Te) from CR model,
∗ Largely determines ne, Te dependence of fD.

fD2, fD+
2

= ne
∑
k
〈σv〉k(Te),

∗ k = reactions leading to n = 3.

– All puffs are 300 K with cosine distribution,

∗ Examined sensitivity in preliminary runs,
∗ Run with (cos θ)4 distribution,
∗ One with 150 K puff.



• Plasma profiles:

– All are taken from measured data mapped to midplane,

– Assume constant on a flux surface,

∗ In triangulated region, estimate ρ = distance between
zone center & nearest flux surface mesh zone.

– Assume ni = ne, Ti = Te.
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C-MOD RESULTS

• Alcator C-Mod shot 1010622006 at 700 ms.

• Baseline computed with time-average plasma profiles,

– 10 – 20% of atoms in cloud undergone reflection,

– “CX fraction” have had a CX,

– Rest from dissociation ⇒ ballistic trajectories.

– ⇒∼ 50−−65% of D emission

• At peak, molecular Dαs contribute ∼ 40%,

– < 10% for R <∼ 0.9 m.

• Compare with time-average experimental GPI images,

– Emission peak near nozzle not seen experimentally,

– Probe data assumed constant for R > 0.91 m,

– Nozzle peak ↓ 10−2 if Te < 2.5 eV

– Or if ne < 3.6× 1016 m−3,

– Both consistent with exponential
extrapolation of probe data.
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• Impose 2-D perturbation on ne and Te,

– Important to understand relation between spatial
variation in emission & underlying plasma fluctuations,

– Consider ad hoc perturbation:

n′e(R,Z) = ne(R,Z)[1 +
1

2
sin(

πZ

0.01
)]

×{1 +
1

2
sin[

π(R−Rsep + 0.0035)

0.005
]},

– where:

∗ The 1/2 factors make this a 50% perturbation,
· Factor ranges from 0.25 to 2.25.

∗ 2 cm wavelength for poloidal (∼ Z) variation,
· Typical size of observed emission structures.

∗ Used only 1 cm in R because of limited radial width,
· 0.0035 shift so innermost data point unchanged.

– Try same perturbation on Te,

∗ Only difference: Te bound between 5 and 100 eV.
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– Both simulations shows same 2-D structure,

– ⇒ wavenumber spectrum at least
similar to that of plasma turbulence,

∗ Expect autocorrelation function
& frequency spectra similar also,

∗ Will subsequently investigate quantitatively.

– Ratio of perturbed / unperturbed emission
6= n′e/ne because ∂ ln fD/∂ ln ne, ∂ ln fD/∂ ln Te < 1.

– Further complicated by molecular contributions,

∗ fD2 and fD+
2
∝ ne,

∗ Te dependence not simple,
∗ Effective scaling varies radially.

• Simple interpretation of GPI: image patterns ∝ n′e/ne,

– And insensitive to Te,

– Valid only if ne <∼ 1018 m−3 and Te � 10 eV,

– Not the case here!

– ⇒ ne, Te dependence of SDα not different enough
to infer perturbation amplitudes,

– Would be simpler if ne, Te in phase.
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Shadow Fraction

• Above focussed only on effect of perturbation on fj,

• They also impact nj!

• “Shadowing effect”: ionization caused by
local ne, Te peak reduces light at smaller R.

• Compare images with and without shadowing,

– “With” shadowing is as above,

– To eliminate, use perturbed fj and unperturbed nj,

– “Unshadowed” clearly shows ne perturbation structure,

– Shadowed image smeared out,

∗ Due to nj reductions by ne peaks,
∗ And nj increases by ne minima.
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• Estimate by computing:

Fs =

∑
j
(n′j − nj)f

′
j

 /
∑
j

njfj,

– Where prime indicates perturbed value.

– Evaluate separately for both “perturbed” simulations.

• Structure is complicated!

• Main observations:

1. |Fs| >∼ 0.5 in many places
⇒ too large to ignore in GPI analysis.

2. Most of Fs due to molecules,

– Analogous quantity based on atoms only ≤ 0.2.

• To understand Fs look at radial slices,

– Z = −0.034: peak in n′e/ne,

– Z = −0.025: at nozzle & a minimum in n′e/ne.

– Compare with 1− n′e/ne,

∗ 1− n′e/ne < 0 ⇒ local ne > unperturbed value,
∗ 1− n′e/ne > 0 ⇒ local ne < unperturbed value,
∗ Te perturbation differs at edges.

– Fs < 0 ⇒ nj locally reduced,

∗ Fs drops are in “shadows” of largest n′e/ne.

– Fs > 0 ⇒ nj locally increased,

∗ Fs > 0 at Z = −0.025 since ne modulation near min.,
∗ Not so in perturbed Te case due to smaller

dissociation rate & strong Te dependence of fj.
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CONCLUSIONS

• DEGAS 2simulations show that spatial variation
of Dα emission reflects that of ne, Te turbulence.

• But, ne, Te dependence of emission rate complicated,

– ⇒ no simple scheme to get plasma fluctuations.

• Contributions from molecules significant,

– Further complicating ne, Te dependence,

– Densities significantly affected by perturbation.

• ⇒ will need neutral transport code to interpret GPI,

– Must do careful benchmarks first,

– To verify these conclusions,

– Validate atomic & molecular physics models.


